MATH 512, SPRING 2022 HOMEWORK 2, DUE MONDAY MARCH 14

Problem 1. Suppose that $S \subset \omega_1$ is a stationary, co-stationary set. Let $\mathbb{P} = \{c \subset \omega_1 \mid c \text{ is bounded and closed and } c \cap S = \emptyset\}$, with the order that $c' \leq c$ iff c' end extends c, i.e. for some α , $c' \cap \alpha = c$. Let G be \mathbb{P} -generic. Show that in V[G], S is non stationary.

Problem 2. Let $j: V \to M$ be an elementary embedding with critical point κ . Suppose that \mathbb{P} is Prikry forcing at κ (for some measure) and let G be \mathbb{P} -generic. Recall that in V[G], κ is a singular cardinals with cofinality ω . Show that we cannot lift the embedding j to V[G]. In particular, show that any for any generic filter H for $j(\mathbb{P})$, we cannot have that $j^*G \subset H$.

Problem 3. Suppose that \mathbb{P} is Prikry forcing at κ (for some measure) and let G be \mathbb{P} -generic. Show that the set $S = \kappa^+ \cap \operatorname{cof}^V(\kappa)$ does not reflect.

A projection $\pi : \mathbb{P} \to \mathbb{Q}$ is a functions such that:

- $p \leq_{\mathbb{P}} q$, then $\pi(q) \leq_{\mathbb{Q}} \pi(q)$, and
- for every $p \in \mathbb{P}$, for every $q \in \mathbb{Q}$ with $q \leq \pi(p)$, we have that there is a $p' \leq p$, such that $\pi(p') \leq q$.

Problem 4. Show that if $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection, and G is \mathbb{P} -generic, then $H := \{q \in \mathbb{Q} \mid (\exists p \in G) \pi(p) \leq q\}$ is \mathbb{Q} -generic.

Problem 5. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ is a two step iteration.

- (1) If G is \mathbb{P} -generic over V and H is $\dot{\mathbb{Q}}_G$ generic over V[G], show that $G * H := \{(p, \dot{q}) \mid p \in G, \dot{q}_G \in H\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V.
- (2) Suppose K is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V and define $G := \{p \in \mathbb{P} \mid (\exists \dot{q})((p, \dot{q}) \in K)\}$ and $H := \{\dot{q}_G \mid (\exists p)((p, \dot{q}) \in K)\}$. Show that G is \mathbb{P} -generic over V and H is $\dot{\mathbb{Q}}_G$ generic over V[G]